The Generalized Broer-Kaup-Kupershmidt System and its Hamiltonian Extension

نویسندگان

  • Tao Chen
  • Li-Li Zhu
  • Lei Zhang
چکیده

Abstract The generalized Broer-Kaup-Kupershmidt (generalized BKK) isospectral problem, including the x-derivative of potential, is considered based on Lie algebra A1. The variational trace identity is extended to construct Hamiltonian structure of generalized BKK system. The Lie algebra A1 is extended to the non-semi-simple Lie algebra of 4 × 4 matrix form, from which a hierarchy of soliton equations related to generalized BKK system are given. The Hamiltonian structure of the resulting system is established, by the generalized trace identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Complex Travelling Wave Solutions to the Nonlinear Broer-Kaup-Kupershmidt System

In this present work we applied the direct algebraic method to Broer-Kaup-Kupershmidt system. Then new types of complex solutions are obtained to the Broer-Kaup-Kupershmidt system.

متن کامل

A multiple Riccati equations rational expansion method and novel solutions of the Broer–Kaup–Kupershmidt system

To construct exact solutions of nonlinear partial differential equation, a multiple Riccati equations rational expansion method (MRERE) is presented and a series of novel solutions of the Broer–Kaup–Kupershmidt system are found. The novel solutions obtained by MRERE method include solutions of hyperbolic (solitary) function and triangular periodic functions appearing at the same time. 2005 Else...

متن کامل

The Fission, Fusion and Annihilation of Solitons of the (2+1)-Dimensional Broer-Kaup-Kupershmidt System

The interactions between soliton solutions of integrable models are usually considered to be completely elastic. That is to say, the amplitude, velocity and wave shape of solitons are not changed after nonlinear interaction [1]. However, for some specific solutions of some (2+1)-dimensional models, the interactions among solitonic excitations are not completely elastic since their shapes are ch...

متن کامل

Explicit exact solutions for variable coefficient Broer-Kaup equations

Based on symbolic manipulation program Maple and using Riccati equation mapping method several explicit exact solutions including kink, soliton-like, periodic and rational solutions are obtained for (2+1)-dimensional variable coefficient Broer-Kaup system in quite a straightforward manner. The known solutions of Riccati equation are used to construct new solutions for variable coefficient Broer...

متن کامل

New periodic and soliton solutions of nonlinear evolution equations

In this paper, the tanh and sine–cosine methods are used to construct exact periodic and soliton solutions of nonlinear evolution equations arising in mathematical physics. Many new families of exact travelling wave solutions of the generalized Hirota–Satsuma coupled KdV system, generalized-Zakharov equations and (2 + 1)-dimensional Broer–Kaup– Kupershmidt system are successfully obtained. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011